If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49m^2+16m=0
a = 49; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·49·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*49}=\frac{-32}{98} =-16/49 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*49}=\frac{0}{98} =0 $
| 0.7=6.7t+9.6+2.2t | | 9(p-2)=25 | | -8-4b=-17-b | | 2(u-1)-2=-3(-9u+2)-9u | | x9-43=1000 | | 12(1-e)-(116e)=0 | | 6-2p=58 | | 3x+2+8+x+2+x=20 | | -7-5n=-47+5n | | 9(u+8)=-3u-36 | | 3.6x-18=2.8x+5.4 | | 9+47=x | | 68+r=136 | | -8b-1=-25 | | 4y+2=18-4y | | 2t5=7 | | 72=2(2x+x) | | 2x+5x+30=170 | | 14•9=63x | | 8+x+2+x=20 | | 7x+15+8x=120 | | 5/3=u/11 | | 12(1-e)=116e | | 4m^2-16m-9=0 | | 9z+10=21-2z | | -2/5=-2/3w | | 33x-6=3 | | 7x+15+8x=90 | | x/4-3=+-2 | | 25=-3x+4 | | √(x+6)-4=x | | 8k-8=3k+12 |